

Appendix C Calibration Certificates of Monitoring Equipment

TE-5025A

RECALIBRATION DUE DATE:

February 5, 2020

Certificate of Calibration

Calibration Certification Information

Cal. Date: February 5, 2019

Rootsmeter S/N: 438320

Ta: 293

Ϋ́

Operator: Jim Tisch

Pa: 753.1

mm Hg

Calibration Model #:

Calibrator S/N: 1941

•	Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)
	1	1	2	1	1.4830	3.2	2.00
	2	3	4	1	1.0430	6.4	4.00
I	3	5	6	1	0.9300	7.9	5.00
I	4	7	8	1	0.8870	8.7	5.50
	5	9	10	1	0.7320	12.7	8.00

	Data Tabulation								
Vstd Qstd		$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)}$		Qa	$\sqrt{\Delta H (Ta/Pa)}$				
(m3)	(m3) (x-axis) (y-axis)		Va	(x-axis)	(y-axis)				
1.0036	0.6767	1.4197	0.9958	0.6714	0.8821				
0.9993	0.9581	2.0078	0.9915	0.9506	1.2475				
0.9973	1.0723	2.2448	0.9895	1.0640	1.3947				
0.9962	1.1231	2.3544	0.9884	1.1144	1.4628				
0.9908 1.3536		2.8395	0.9831	1.3431	1.7642				
	m=	2.09680		m=	1.31298				
QSTD	b=	-0.00065	QA	b=	-0.00040				
	r=	0.99999		e r=	0.99999				

Calculations						
Vstd=	ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta)	Va=	ΔVol((Pa-ΔP)/Pa)			
Qstd=	Vstd/ΔTime	Qa= Va/ΔTime				
For subsequent flow rate calculations:						
Qstd=	$\mathbf{Qstd} = \frac{1}{m} \left(\left(\sqrt{\Delta H \left(\frac{Pa}{Pstd} \right) \left(\frac{Tstd}{Ta} \right)} \right) - b \right) $ $\mathbf{Qa} = \frac{1}{m} \left(\left(\sqrt{\Delta H \left(Ta/Pa \right)} \right) - b \right)$					

Standard Conditions						
Tstd: 298.15 °K						
Pstd:	760 mm Hg					
	Кеу	,				
1	or manometer reading (in H2O)					
	ter manometer reading (mm Hg)					
	osolute temperature (°K)					
Pa: actual barometric pressure (mm Hg)						
b: intercept						
m: slope						

RECALIBRATION

US EPA recommends annual recalibration per 1998
40 Code of Federal Regulations Part 50 to 51,
Appendix B to Part 50, Reference Method for the
Determination of Suspended Particulate Matter in
the Atmosphere, 9.2.17, page 30

Tisch Environmental, Inc. 145 South Miami Avenue Village of Cleves, OH 45002 www.tisch-env.com

TOLL FREE: (877)263-7610

FAX: (513)467-9009

TSP Sampler Calibration

SITE

Location: Lian Tang 3
Sampler: TE-5170 MFC (Serial # : 2359) Date: March 5, 2019 Tech: Sam Wong

CONDITIONS Barometric Pressure (in Hg): 39.90 Corrected Pressure (mm Hg): 1013 Temperature (deg F): Temperature (deg K): 295 Average Press. (in Hg): 39.90 Corrected Average (mm Hg): 1013 Average Temp. (deg F): Average Temp. (deg K): 295

CALIBRATION ORIFICE Qstd Slope: 2.09680

Make: Tisch TE-5025A Qstd Intercept: -0.00065 Model: Serial#: Date Certified: February 5, 2019

CALIBRATIONS									
Plate or Test #	H2O (in)	Qstd (m3/min)	I (chart)	IC (corrected)	LINEAR REGRESSION				
1	12.00	1.917	56.0	64.97	Slope =	32.9414			
2	10.00	1.750	52.0	60.33	Intercept =	2.5378			
3	8.20	1.585	48.0	55.69	Corr. coeff.=	0.9987			
4	5.20	1.262	38.0	44.09					
5	3.20	0.990	30.0	34.81	<pre># of Observations:</pre>	5			

Calculations

Qstd = 1/m[Sqrt(H2O(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart response

I = actual chart response m = calibrator Qstd slope

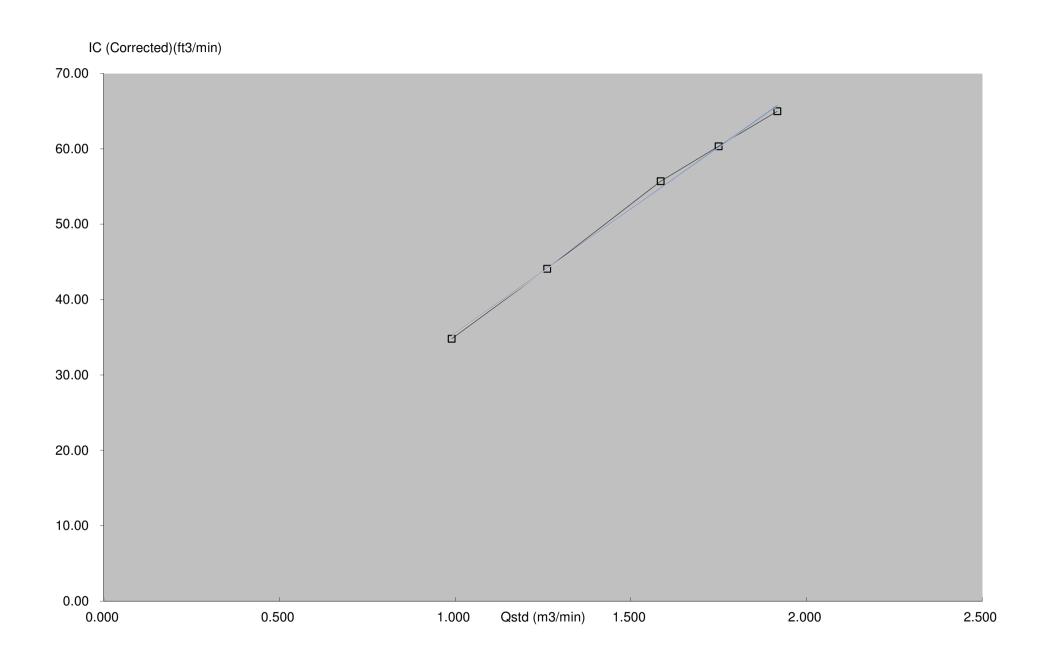
b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pa = actual pressure during calibration (mm Hg)

Tstd = 298 deg K

Pstd = 760 mm Hg For subsequent calculation of sampler flow:


1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

= sampler slope = sampler intercept m

b

= chart response

Tav = daily average temperature Pav = daily average pressure

Certificate No. 803615

Page 1 of 2 Pages

Customer: Enovative Environmental Service Limited

Address: Flat 6, 3/F, Block E, Wah Lok Industrial Centre, 31-35 Shan Mei Street, Shatin, N.T., Hong Kong.

Order No.: Q81437

Date of receipt

13-Apr-18

Item Tested

Description: Sound Level Calibrator

Manufacturer: Rion

I.D.

: 217656

Model

: NC-74

Serial No.

: 34678506

Test Conditions

Date of Test: 20-Apr-18

Supply Voltage : -

Ambient Temperature:

 $(23 \pm 3)^{\circ}C$

Relative Humidity: (50 ± 25) %

Test Specifications

Calibration check.

Ref. Document/Procedure: F21, Z02.

Test Results

All results were within the IEC 60942 Class 1 specifications.

The results are shown in the attached page(s).

Main Test equipment used:

Equipment No.	Description	Cert. No.	Traceable to
S014	Spectrum Analyzer	707126	NIM-PRC & SCL-HKSAR
S240	Sound Level Calibrator	703741	NIM-PRC & SCL-HKSAR
S041	Universal Counter	802061	SCL-HKSAR
S206	Sound Level Meter	707129	SCL-HKSAR

The values given in this Calibration Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Hong Kong Calibration Ltd. shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to International System of Units (SI), or by reference to a natural constant. The test results apply to the above Unit-Under-Test only

Calibrated by:

Elva Chong

Approved by:

Kin Wong

This Certificate is issued by:

Hong Kong Calibration Ltd.

Date:

20-Apr-18

Unit 8B, 24/F., Well Fung Industrial Centre, No. 58-76, Ta Chuen Ping Street, Kwai Chung, NT, Hong Kong. Tel: 2425 8801 Fax: 2425 8646

Certificate No. 803615

Page 2 of 2 Pages

Results:

1. Generated Sound Pressure Level

UUT Nominal Value (dB)	Measured Value (dB)	IEC 60942 Class 1 Spec.
94.0	94.2	± 0.4 dB

Uncertainty: ± 0.2 dB

2. Short-term Level Fluctuation : 0.0 dB

IEC 60942 Class 1 Spec. : ± 0.1 dB

Uncertainty: ± 0.01 dB

3. Frequency

UUT Nominal Value (kHz)	Measured Value (kHz)	IEC 60942 Class 1 Spec.
I	0.999	± 1 %

Uncertainty: $\pm 3.6 \times 10^{-6}$

4. Total Distortion : < 1.1 %

IEC 60942 Class 1 Spec. : < 4% Uncertainty : $\pm 2.3\%$ of reading

Remark: 1. UUT: Unit-Under-Test

2. The uncertainty claimed is for a confidence probability of not less than 95%.

3. Atmospheric Pressure: 1 016 hPa.

----- END -----

Certificate No. 804605

Page

3 Pages of

Customer: Enovative Environmental Service Limited

Address: Flat 6, 3/F, Block E, Wah Lok Industrial Centre, 31-35 Shan Mei Street, Shatin, N.T., Hong Kong.

Order No.: Q81807

Date of receipt

9-May-18

Item Tested

Description: Sound Level Meter

Manufacturer: Rion

I.D.

Model

: NL-52

Serial No.

: 01143484

Test Conditions

Date of Test: 15-May-18

Supply Voltage : --

Ambient Temperature:

 $(23 \pm 3)^{\circ}$ C

Relative Humidity : $(50 \pm 25) \%$

Test Specifications

Calibration check.

Ref. Document/Procedure: Z01, IEC 61672.

Test Results

All results were within the IEC 61672 Type1 or manufacturer's specification.

The results are shown in the attached page(s).

Main Test equipment used:

Equipment No. Description

Cert. No.

Traceable to

S017

Multi-Function Generator

C170120

SCL-HKSAR

S240

Sound Level Calibrator

803357

NIM-PRC & SCL-HKSAR

The values given in this Calibration Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Hong Kong Calibration Ltd. shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to International System of Units (SI), or by reference to a natural constant. The test results apply to the above Unit-Under-Test only

Calibrated by:

Approved by:

This Certificate is issued by: Hong Kong Calibration Ltd.

Hait OD OALE Mall Europ Industrial Co

15-May-18

Certificate No. 804605

Page 2 of 3 Pages

Results:

1. Self-generated noise: 16.0 dBA (Mfr's Spec ≤ 17 dBA)

2. Acoustical signal test

	UUT S				
	Frequency	Frequency Time Octave		Applied	UUT
Range (dB)	Weighting	Weighting	Filter	Value (dB)	Reading (dB)
20-130	A	F	OFF	94.0	94.0
		S	OFF		94.0
	С	F	OFF) (A)	94.0
	Z	F	OFF		94.0
	Α	F	OFF	114.0	114.1
		S	OFF	:	114.1
	С	F	OFF		114.1
	Z	F	OFF		114.1

IEC 61672 Type 1 Spec. : ± 1.1 dB

Uncertainty: ± 0.1 dB

3 Electrical signal tests of frequency weightings (A weighting)

Frequency	Attenuation (dB)	IEC 61672 Type 1 Spec.
31.5 Hz	-39.6	- 39.4 dB, ± 2 dB
63 Hz	-26.2	- 26.2 dB, ± 1.5 dB
125 Hz	-16.2	- 16.1 dB, ± 1.5 dB
250 Hz	-8.7	- 8.6 dB, ± 1 dB
500 Hz	-3.2	- $3.2 \text{ dB}, \pm 1.4 \text{ dB}$
1 kHz	0.0 (Ref)	$0 \text{ dB}, \pm 1.1 \text{ dB}$
2 kHz	+1.0	+ 1.2 dB, ± 1.6 dB
4 kHz	+0.7	+ 1.0 dB, ± 1.6 dB
8 kHz	-1.2	- 1.1 dB , $+ 2.1 \text{ dB} \sim -3.1 \text{ dB}$
16 kHz	-8.6	$-6.6 \text{ dB}, +3.5 \text{ dB} \sim -17.0 \text{ dB}$

Uncertainty: $\pm 0.1 \text{ dB}$

Certificate No. 804605

Page 3 of 3 Pages

4. Frequency & Time weightings at 1 kHz

4.1 Frequency Weighting (Fast)

	- 1.22	TE G (1 (50		
UUT	Applied	UUT	Difference	IEC 61672
Setting	Value (dB)	Reading (dB)	(dB)	Type 1 Spec.
A	94.0	94.0 (Ref.)		± 0.4 dB
С	94.0	94.0	0.0	
Z	94.0	94.0	0.0	

4.2 Time Weighting (A-weighted)

4.2 Time Weighting (A Weighted)							
UUT	Applied	UUT	Difference	IEC 61672			
Setting	Value (dB)	Reading (dB)	(dB)	Type 1 Spec.			
Fast	94.0	94.0 (Ref.)		± 0.3 dB			
Slow	94.0	94.0	0.0				
Time-averaging	94.0	94.0	0.0				

Uncertainty: ± 0.1 dB

Remarks: 1. UUT: Unit-Under-Test

- 2. The uncertainty claimed is for a confidence probability of not less than 95%.
- 3. Atmospheric Pressure: 1 009 hPa.
- 4. Preamplifier model: NH-25, S/N: 21113
- 5. Firmware Version: 1.8
- 6. Power Supply Check: OK
- 7. The UUT was adjusted with the laboratory's sound calibrator at the reference sound pressure level before the calibration.

----- END -----